
SHERLOCK SECURITY REVIEW FOR

Prepared for: OlympusPrepared by: SherlockLead Security Expert: IllIllIDates Audited: January 22 - January 25, 2024Prepared on: February 6, 2024

Introduction
The Olympus protocol is a decentralized financial (DeFi) system that supportsOHM, a treasury backed token on the Ethereum network.
ScopeRepository: OlympusDAO/bophadesBranch: governance-cleanCommit: 3c4098ef9b2870f4ebd912b15466780676ba7db8
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High4 0
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues
IllIllIhalscawfree

LTDingZhenckfibonacci
haxatronr0ck3tzKow

1

blutorqueemrekocakpontifex
nobody2018Bauercocacola

alexzoids1ceBreeje

2

Issue M-1: Nobody can cast for any proposal
Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance-judging/issues/37
Found byBauer, Breeje, alexzoid, blutorque, cawfree, cocacola, emrekocak, fibonacci, hals,nobody2018, pontifex, s1ce
Summary[castVote](https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L369)/[castVoteWithReason](https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L385)/[castVoteBySig](https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L403) are used to vote for the specified proposal. Thesefunctions internally call [castVoteInternal](https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L433-L437) to perform voting logic. However,
castVoteInternal can never be executed successfully.
Vulnerability Detail
File: bophades\src\external\governance\GovernorBravoDelegate.sol
433: function castVoteInternal(
434: address voter,
435: uint256 proposalId,
436: uint8 support
437:) internal returns (uint256) {
......
444: // Get the user's votes at the start of the proposal and at the

time of voting. Take the minimum.,!

445: uint256 originalVotes = gohm.getPriorVotes(voter,
proposal.startBlock);,!

446:-> uint256 currentVotes = gohm.getPriorVotes(voter, block.number);
447: uint256 votes = currentVotes > originalVotes ? originalVotes :

currentVotes;,!

......
462: }

The second parameter of gohm.getPriorVotes(voter, block.number) can only a
3

number smaller than block.number. Please see the [code](https://etherscan.io/token/0x0ab87046fBb341D058F17CBC4c1133F25a20a52f#code#L703) deployed bygOHM on the mainnet:
function getPriorVotes(address account, uint256 blockNumber) external view

returns (uint256) {,!

-> require(blockNumber < block.number, "gOHM::getPriorVotes: not yet
determined");,!

......
}

Therefore, L446 will always revert. Voting will not be possible.Copy the coded POC below to one project from Foundry and run forge test
-vvv to prove this issue.
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import "forge-std/Test.sol";

interface CheatCodes {
function prank(address) external;
function createSelectFork(string calldata,uint256) external returns(uint256);

}

interface IGOHM {
function getPriorVotes(address account, uint256 blockNumber) external view
returns (uint256);,!

}

contract ContractTest is DSTest{
address gOHM = 0x0ab87046fBb341D058F17CBC4c1133F25a20a52f;
CheatCodes cheats = CheatCodes(0x7109709ECfa91a80626fF3989D68f67F5b1DD12D);

function setUp() public {
cheats.createSelectFork("https://rpc.ankr.com/eth", 19068280);

}

function testRevert() public {
address user = address(0x12399543949349);
cheats.prank(user);
IGOHM(gOHM).getPriorVotes(address(0x1111111111), block.number);

}

function testOk() public {
address user = address(0x12399543949349);

4

cheats.prank(user);
IGOHM(gOHM).getPriorVotes(address(0x1111111111), block.number - 1);

}
}
/**output
[PASS] testOk() (gas: 13019)
[FAIL. Reason: revert: gOHM::getPriorVotes: not yet determined] testRevert()

(gas: 10536),!

Traces:
[10536] ContractTest::testRevert()

[0] VM::prank(0x0000000000000000000000000012399543949349)
()

[540] 0x0ab87046fBb341D058F17CBC4c1133F25a20a52f::getPriorVotes(0x000000000 c

0000000000000000000001111111111, 19068280 [1.906e7]) [staticcall],!

revert: gOHM::getPriorVotes: not yet determined
revert: gOHM::getPriorVotes: not yet determined

Test result: FAILED. 1 passed; 1 failed; 0 skipped; finished in 1.80s
**/

ImpactNobody can cast for any proposal. Not being able to vote means the entiregovernance contract will be useless. Core functionality is broken.
Code Snippethttps://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L446
Tool usedManual Review
Recommendation
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.haxatron commented:

5

Medium. It would be caught immediately on deployment andimplementation is upgradeable. There can be no loss of funds which isrequisite of a high.IllIllI000Agree with haxatron that this is Medium, not High, based on Sherlock's rulesnevillehuangCan agree, since this is purely a DoS, no malicious actions can be performed sinceno voting can be done anyways.@Czar102 I am interested in hearing your opinion, but I will set medium for now,because governance protocols fund loss impact is not obvious but I initially rated ithigh because it quite literally breaks the whole protocol. I believe sherlock needs tocater to different types of protocols and not only associate rules to defi/financiallosses (example protocols include: governance, on chain social media protocolsetc..)0xLienidFix: https://github.com/OlympusDAO/bophades/pull/293IllIllI000The PR follows the suggested recommendation and correctly modifies the onlyplace that solely block.number is used, changing it to block.number - 1. The onlyplace not using this value is the call above it which uses proposal.startBlock. The
state() when startBlock is equal to block.number is ProposalState.Pending, so thiscase will never cause problems, since there are checks of the state. The PR alsomodifies the mock gOHM contract to mirror the behavior that caused the bug.s1ceEscalateThis is a high. Voting is a core part of a governance protocol, and this bricks allvoting functionality.sherlock-admin2EscalateThis is a high. Voting is a core part of a governance protocol, and thisbricks all voting functionality.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.

6

0xf1b0Besides the fact that this issue breaks the core logic of the contract, it won't beimmediately detected upon deployment, as previously mentioned as the reason fordowngrading the severity. The voting process only becomes possible after aproposal has been made and time has elapsed. At this point, the issue will beraised, necessitating the deployment of an update. While the new version is beingprepared, the proposal may expire, and a new one will have to be created. If theproposal includes some critical changes, this time delay can pose a seriousproblem.IllIllI000Ignore this part since, while true, it appears to be confusing some: The sponsormentioned this test file as where to look for how things will be deployed. The firstaction is to propose and start a vote for assigning the whitelist guardian, and thatwill flag the issue before anything else.Furthermore, the timelock needs to pull in order to become and admin with accessto the treasury. Until that happens, the existing admin has the power to doanything, so there's no case where something critical can't be done. The 'pull'requirement for transferring the admin to the timelock is a requirement of the code,not of the test. The Sherlock rules also state that opportunity costs (e.g. delays invoting for example, due to a loss of core functionality) do not count as a lossof funds.r0ck3tzxThe test file within setUp() function configures the environment for testing, not forthe actual deployment. The deployment process can and probably will lookdifferent, so no assumptions should be made based on the test file. The mentionjust shows how the whitelistGuardian will be configured, and not at whattime/stage it will be done.The LSW creates hypotheticals about how the deployment process might look, andbecause of that, the issue would be caught early. Anyone who has ever deployed aprotocol knows that the process is complex and often involves use of privatemempools. Making assumptions about the deployment without having actualdeployment scripts is dangerous and might lead to serious issues.0xf1b0Even though some proposals may be initiated at the time of deployment, it will takebetween 3 to 7 days before the issue becomes apparent, as voting will not beavailable until then.nevillehuangI agree with watsons here, but would have to respect the decision of @Czar102 and
7

his enforcement of sherlock rules. Governance protocols already have nuances offunds loss being not obvious, and the whole protocol revolves around voting as thecore mechanism, if you cannot vote, you essentially lose the purpose of the wholegovernance.0xf1b0I've seen a lot of discussion regarding the rule of funds at risk. It seems that theynever take into account the lost profits. A scenario where the core functionality ofthe system is broken could result in a loss of confidence in the protocol, causingusers to be hesitant about investing their money due to the fear of such an issuerecurring.Czar102From my understanding, due to the fact that the timelock needs to pull, the newgovernance contract needs to call it. And since it's completely broken, it will neverpull the admin rights.Hence, this is not a high severity impact of locking funds and rights in agovernance, but a medium severity issue since the contract fails to work. Is itaccurate? @IllIllI000IllIllI000Yes, that's correctCzar102Planning to reject the escalation and leave the issue as is.0xf1b0By the way, it will not be possible to update the contract, because a newimplementation can only be set through the voting process, which does not work.That's at least 2 out of 3:• it won't be immediately detected upon deployment• it's not upgradeableIllIllI000it's being deployed fresh for this project, so it'll just be redeployed. The 2/3 stuff Ithink you're referring to is for new contestsCzar102Result: Medium Has duplicatessherlock-adminEscalations have been resolved successfully!
8

Escalation status:• s1ce: rejected

9

Issue M-2: High risk checks can be bypassed with extra
calldata padding
Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance-judging/issues/100
Found byIllIllI, Kow, cawfree, fibonacci, haxatron, r0ck3tz
SummaryAdding extra unused bytes to proposal calldata can trick the
_isHighRiskProposal() function
Vulnerability DetailThe length checks on the transaction calldata of what falls into the 'high risk'proposal category is too strict, and incorrectly fails with extra padding. In solidity,any extra bytes of calldata, beyond what is required to satisfy the functionarguments, are ignored, and have no effect on the operation of the function beingcalled.
ImpactA proposal that should have been flagged as high risk, is not, and therefore can bepassed with the easier, lower, quorum. This violates a critical invariant.
Code SnippetChecks for calls to the kernel's executeAction() function, expect exactly the rightnumber of bytes to satisfy the function arguments, and no more:
// File: src/external/governance/GovernorBravoDelegate.sol :

GovernorBravoDelegate._isHighRiskProposal() #1,!

631 // Check if the action is making a core change to system
via the kernel,!

632 if (selector == Kernel.executeAction.selector) {
633 uint8 action;
634 address actionTarget;
635
636 @> if (bytes(signature).length == 0 && data.length ==

0x44) {,!

10

637 assembly {
638 action := mload(add(data, 0x24)) //

accounting for length and selector in first 4 bytes,!

639 actionTarget := mload(add(data, 0x44))
640 }
641 @> } else if (data.length == 0x40) {
642 (action, actionTarget) = abi.decode(data, (uint8,

address));,!

643 } else {
644 continue;
645: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L631-L645this results in an easier quorum threshold:
// File: src/external/governance/GovernorBravoDelegate.sol :

GovernorBravoDelegate.propose() #2,!

168 // Identify the quorum level to use
169 @> if (_isHighRiskProposal(targets, signatures, calldatas)) {
170 quorumVotes = getHighRiskQuorumVotes();
171 } else {
172 @> quorumVotes = getQuorumVotes();
173: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L168-L173
Tool usedManual Review
RecommendationChange length checks to be >=, rather than strict equality, since the functionsignature already specifies the number of arguments
PoCThe following test shows that extending the calldata by an empty byte still triggersa valid call to executeAction(), but is categorized as lower severity:

11

diff --git a/bophades/src/test/external/GovernorBravoDelegate.t.sol
b/bophades/src/test/external/GovernorBravoDelegate.t.sol,!

index 778163c..bdb6ae2 100644
--- a/bophades/src/test/external/GovernorBravoDelegate.t.sol
+++ b/bophades/src/test/external/GovernorBravoDelegate.t.sol
@@ -386,6 +386,10 @@ contract GovernorBravoDelegateTest is Test {

assertEq(quorum, 200_000e18);
}

+ function executeAction(Actions action_, address target_) external {
+ console2.log("executed with extra calldata");
+ }
+

function testCorrectness_proposeCapturesCorrectQuorum_highRisk() public {
// Activate TRSRY
vm.prank(address(timelock));

@@ -404,9 +408,12 @@ contract GovernorBravoDelegateTest is Test {
calldatas[0] = abi.encodeWithSelector(

kernel.executeAction.selector,
Actions.ActivatePolicy,

- address(custodian)
+ address(custodian),
+ ""

);

+ address(this).call(calldatas[0]);
+

vm.prank(alice);
bytes memory data = address(governorBravoDelegator).functionCall(

abi.encodeWithSignature(

Output:
% forge test --match-test testCorrectness_proposeCapturesCorrectQuorum_highRisk

-vv,!

...
[FAIL. Reason: assertion failed]

testCorrectness_proposeCapturesCorrectQuorum_highRisk() (gas: 568208),!

Logs:
executed with extra calldata
Error: a == b not satisfied [uint]

Expected: 300000000000000000000000
Actual: 200000000000000000000000

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 14.92ms

12

...

Discussion0xLienidValid, will fix by reverting if the calldata doesn't match the right size since we knowwhat the size must be for an executeAction call0xLienidFix: https://github.com/OlympusDAO/bophades/pull/299IllIllI000The PR introduces a new revert error, and reverts if the length is longer thanexpected, rather than allowing the code to continue if the calldata is longer thanexpected. Since the selector ensures that the right number of arguments is passed,there is no error in restricting possible future uses of extra calldata. The PR alsoadds a test.

13

IssueM-3: Post-proposal votequorum/thresholdchecksuse a stale total supply value
Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance-judging/issues/102
Found byIllIllI, hals
SummaryThe pessimistic vote casting approach stores its cutoffs based on the total supplyduring proposal creation, rather than looking up the current value for each check.
Vulnerability Detail
gOHM token holders can delegate their voting rights either to themselves or
to an address of their choice. Due to the elasticity in the gOHM supply, and
unlike the original implementation of Governor Bravo, the Olympus governance
system relies on dynamic thresholds based on the total gOHM supply. This
mechanism sets specific thresholds for each proposal, based on the current
supply at that time, ensuring that the requirements (in absolute gOHM terms)
for proposing and executing proposals scale with the token supply. https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/tree/main/bophades/audit/2024-01_governance#olympus-governor-bravo-implementationThe above means that over time, due to dynamic minting and burning, the totalsupply will be different at different times, whereas the thresholds/quorumschecked against are solely the ones set during proposal creation.
ImpactDoS of the voting system, preventing proposals from ever passing, under certaincircumstancesConsider the case of a bug where there is some sort of runaway death spiral bug orattack in the dymamic burning of gOHM (e.g. opposite of Terra/Luna), and the onlyfix is to pass a proposal to disable the module(s) causing a problem whereeveryone is periodically having their tokens burn()-from-ed. At proposal creationthere are sufficient votes to pass the threshold, but after the minimum 3-daywaiting period, the total supply has been halved, and the original proposer nolonger has a sufficient quorum to execute the proposal (or some malicious userdecides to cancel it, and there is no user for which isWhitelisted() returns true).

14

No proposal can fix the issue, since no proposal will have enough votes to pass, bythe time it's time to vote. Finally, once the total supply reaches low wei amounts,the treasury can be stolen by any remaining holders, due to loss of precision:• getProposalThresholdVotes(): min threshold is 1_000, so if supply is <100,don't need any votes to pass anything• getQuorumVotes(): quorum percent is hard-coded to 20_000 (20%), so ifsupply drops below 5, quorum is zero• getHighRiskQuorumVotes(): high percent is hard-coded to 30_000 (30%), so ifsupply drops below 4, quorum is zero for high risk
Code SnippetThe quorum comes from the total supply...
// File: src/external/governance/GovernorBravoDelegate.sol :

GovernorBravoDelegate.getHighRiskQuorumVotes() #1,!

698 function getQuorumVotes() public view returns (uint256) {
699 return (gohm.totalSupply() * quorumPct) / 100_000;
700 }
...
706 function getHighRiskQuorumVotes() public view returns (uint256) {
707 return (gohm.totalSupply() * highRiskQuorum) / 100_000;
708: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L696-L708...and is set during propose(), and checked as-is against the eventual vote:
// File: src/external/governance/GovernorBravoDelegate.sol :

GovernorBravoDelegate.getVoteOutcome() #2,!

804 } else if (
805 (proposal.forVotes * 100_000) / (proposal.forVotes +

proposal.againstVotes) <,!

806 @> approvalThresholdPct ||
807 @> proposal.forVotes < proposal.quorumVotes
808) {
809 return false;
810: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L804-L810
15

Tool usedManual Review
RecommendationAlways calculate the quorum and thresholds based on the current
gohm.totalSupply() as is done in the OZ implementation, and consider makingvotes based on the fraction of total supply held, rather than a raw amount, sincevote tallies are affected too
Discussion0xLienidIf votes are locked in at a maximum of the value a voter had at the time theproposal started I don't think it makes sense to use the current totalSupply atproposal queueing to determine success/meeting quorum. you want it to be acomparable value to the votes values, hence lock it in at proposal creationIllIllI000Since the votes are locked in at the proposal start, then shouldn't the quorum bebased on the total supply at that starting block, in order to have a comparablevalue? Right now the code is consistent with the proposal time only, which mayhave a vastly different total supply. Shouldn't the code always be consistent withtotal supply of whichever block is being checked? The votes would still be at thetime of the start of voting, but when determining whether a proposal should bequeueable/executable/cancelable, if everyone's token counts and the total supplyhas be halved, there has been no change in who logically would be best positionedto vote, but since the code compares against a stored raw value rather than a ratio,the proposal can fail through no fault of the proposer. They would be able topropose a new vote but be unable to use their old proposal, even though theownership percentage is the same as before.nevillehuang@0xLienid I think @IllIllI000 highlights a valid scenario where this can cause asignificant issue, and makes a good point as to why OZ implements quorums andthresholds computation that way.However, I can also see how this is speculating on emergency situations etc.., but Ithink in the context of a governance, it is reasonable given it is where sensitiveactions are performed. @Czar102 What do you think of this?0xLienid

16

I just don't agree that you want the quorum to be subject to deviations in supplyduring the voting period. It allows user manipulation of the ease/difficulty requiredto pass a proposal.shouldn't the quorum be based on the total supply at that starting block,in order to have a comparable value?yes, but that's impossible with gOHMFrankly, I feel like if there is a critical bug in the core voting token then it's prettyexpected that the governance system is also broken.The only tenable option I guess is getting rid of the pessimistic voting.0xLienid@nevillehuang @IllIllI000 Do you guys have additional thoughts on this? I'm tryingto think about how severe it actually is, and if there's any path to fixing it other thanusing the live total supply which feels more or less similar to using votes not pinnedto a block which is bad.IllIllI000@0xLienid When you say it's impossible with gOHM, I believe you mean that oncethe starting block has passed, that there's no way to get the total supply from thatprior block. If that's what you meant, in order to get the total supply at the startingblock, you could require that the proposal creator actually trigger the start of voting(within some grace period) with another transaction at some point after theprojected start block based on the delay, and have that operation update thestored quorums and start block at that point, assuming that the old quorums arestill valid. In reality, the proposer controls the block during which the start occursanyway, since the proposal block is under their control, and the delay is known.As for the remainder of the issue, I'm not familiar with all that is planned, but I don'tthink it would have to be a bug in the core voting token itself - it could be a kernelmodule that has a role that allows it to mint/burn gOHM, given some algorithm witha time delay. Once things are decentralized, it's difficult to be able to predict thatthat won't happen. You could create a new gOHM that checkpoints the prior totalsupply, and migrate the old token, but yeah, that would be a big change, and wouldlikely require larger changes than can be done for this contest.nevillehuangActually @IllIllI000 will there even ever be a situation where gOHM would be burnedto literal 100, 5 and 4 given gOHM holds 18 decimals? I think on second look this islow severity, given the protocol can easily just implement a sanity check wherethey block any proposals creation/execution/queue and allow cancellation oncetotalSupply reaches this extreme small values.
17

I'm guessing your issue also points to the possible decrease in absolute quorumsnot just solely small amounts, but I think that example is not realistic andrepresentative enough. Or am I missing a possible scenario where gOHM supplycan reach literal small weis of value?@0xLienid maybe a possible fix would be to make quorum percentages adjustable?This could open to front-running attacks though so I'll have to think through it more.IllIllI000@nevillehuang the 100/5/4 scenario is the end point after which everything can getstolen. Prior to that, this bug outlines that they can't stop an ongoing attackbecause creating a proposal to do so would never pass quorums due to the bug.This bug essentially was an elaboration of the issue described in the duplicate #74,to show that it's an issue with the underlying mechanics, rather than a one-timetotal supply discrepancynevillehuang@IllIllI000 Yup that is my initial thoughts as well, sorry that I got confused by thatscenario. I will likely maintain this issue as medium severity, and facilitatediscussions between us and sponsor for a potential fix, since it seems to be nontrivial.0xLienidOk @IllIllI000 @nevillehuang just talked with the other devs for a bit and here'swhat we came up with.1. Separate out proposal activation to another function so we can snapshot totalsupply more accurately2. Set a minimum total supply such that proposing/queuing/executing ends up inthe hands of an admin (and block the standard behavior for end users) if wefall below that. If you think about a burn bug of this magnitude it's a criticalimplosion of the protocol and so it makes sense to not rely on full on chaingovernanceThoughts?IllIllI000By activation, you mean the triggering of the start of voting like I described above,or do you mean something else? The docs mention a veto guardian that willeventually be set to the zero address. If there is a new admin for this case, it won'tbe able to do the same sort of relinquishment without having the end result of theattack being a locked treasury (assuming there's no governance bypass to accessfunds some other way). If that's acceptable, I believe your two changes will solvethe issue.
18

0xLienidYep, triggering of the start of voting.0xrusowsky• https://github.com/OlympusDAO/bophades/pull/303@IllIllI000 ready for reviewRealLTDingZhenI thought about this issue while the contest was going on and didn't submit it,because I thought it's a design choice——Due to the highly variable totalsupply ofgOHM, the proposer may need far more tokens than its initial amount to ensure thatthe proposal is not canceled, and opponents can use fewer votes to reject theproposal by mint more gOHM. By the way, the solution given by LSR isflawed——Attackers can manipulate totalsupply to cancel the proposer's proposalthrough flashloan.IllIllI000The PR implements part of the discussed changes. There is a new gOHM totalsupply threshold, under which only emergency votes are allowed. The level iscorrectly many orders of magnitude above the levels at which quorums have loss ofprecision. Calls to propose() are prevented when the total supply falls below thecutoff. A new emergencyPropose() is added, which can only be called duringemergencies, by the veto guardian. It does not have any threshold requirements, orany limit to the number of outstanding proposals (both good), and does not update
latestProposalIds (ok). Besides those differences, the code looks like propose().For propose() the end block and quorum are no longer initially set, and require theuser to call activate() to set them instead. The activate() function requires anon-emergency, pending state, for the start block to have been passed, and to nothave been activated before. The proposal can be reentrantly re-activated in thesame way #62, but there aren't any negative effects outside of extra events. Thereis no cut-off of when a proposal can be activated, which may allow proposals tostay dormant for years, until they're finally activated. activate() cannot be calledduring emergencies, so proposals created before an emergency will expire if thingsdon't get resolved. This also means emergencyPropose() does not require activationor any actual votes - just that delays have been respected (seems to be intendedbehavior). The execute() function does not require any specific state duringemergencies for the veto admin, but timelock.executeTransaction() preventscalling it multiple times. The state() function has a new state for Emergency, whichapplies to any proposal created by the veto admin via emergencyPropose(). BugMed: the proposal.proposalThreshold isn't updated during activate(), which can bemany years after the initial proposal. Bug Low: extra events if reentrantly called BugLow: emergency proposals (more than one is allowed) created during oneemergency, can be executed during a later emergency

19

0xLienidRefix: https://github.com/OlympusDAO/bophades/pull/334We added a activation grace period (which is checked in the state call) so thatproposals cannot sit unactivated for months or years. We believe this sufficientlyreduces the proposalThreshold concern. We chose not to update the
proposalThreshold at the time of activation with this added check because it feelsbackwards from a governance perspective to brick someone's proposal afterproposing if their balance has not changed.We also shifted certain components of the proposal struct modification above the
_isHighRiskProposalCheck to prevent reentrancy.IllIllI000The PR correctly addresses the Medium and one of the Lows from item 7 of 9 ofthe prior review, while leaving the remaining Low about emergency proposals beingable to be used across emergencies. The extra events issue is fixed by moving upthe state variable assignments to above the high risk proposal checks. The Mediumis addressed by introducing a new state variable toGovernorBravoDelegateStorageV1, rather than toGovernorBravoDelegateStorageV2, for a grace period. There is no setter for thevariable, so it must be set during the call to initialize() as the penultimateargument, which is properly done, or by creating a new implementation with asetter function. The initialize() call bounds the value within reasonable limits.The min amount is set to 17280, which is 2.4 days, and the max is set to 50400,which is exactly 7 days. The state() function is properly changed to convert
Pending to Expired, after the activation grace period. The code reverts with
GovernorBravo_Vote_Closed() when activation is attempted after the grace period.The PR adds tests for the grace period and for the reentrancy issue With the deathspiral issue and the activation grace period issue resolved, the issue of the totalsupply changing has been mitigated to low.

20

IssueM-4: High-risk actions aren't all covered by the ex-isting checks
Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance-judging/issues/104
Found byIllIllI, LTDingZhen, cawfree, ck
SummaryThings such as changing the list of high risk operations, or migrating kernels are notcounted as high risk, even though they are high-risk
Vulnerability DetailHigh risk modules are checked against a mapping, but the changing of valueswithin the mapping is not marked as high risk.In addition, the MigrateKernel action is not protected, even though it canbrick the protocol
ImpactAllows an attacker to brick the protocol with a low threshold, or to remove thehigh-risk modules from the list of high risk modules, resulting in a lower thresholdViolates invariant of high-risk actions needing to be behind a higher quorum
Code Snippet
MigrateKernel isn't considered high-risk, and neither are calls to_setModuleRiskLevel():
// File: src/external/governance/GovernorBravoDelegate.sol :

GovernorBravoDelegate._isHighRiskProposal() #1,!

647 @> // If the action is upgrading a module (1)
648 if (action == 1) {
649 // Check if the module has a high risk keycode
650 if

(isKeycodeHighRisk[Module(actionTarget).KEYCODE()]) return true;,!

651 }
652 @> // If the action is installing (2) or deactivating

(3) a policy, pull the list of dependencies,!

21

653 else if (action == 2 || action == 3) {
654 // Call `configureDependencies` on the policy
655 Keycode[] memory dependencies =

Policy(actionTarget),!

656 .configureDependencies();
657
658 // Iterate over dependencies and looks for high

risk keycodes,!

659 uint256 numDeps = dependencies.length;
660 for (uint256 j; j < numDeps; j++) {
661 Keycode dep = dependencies[j];
662 if (isKeycodeHighRisk[dep]) return true;
663 }
664: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L647-L664
Tool usedManual Review
RecommendationAdd those operations to the high risk category
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.haxatron commented:Medium. Bypass of a non-critical security feature for MigrateKernel(). Iwould say setModuleRiskLevel() part doesn't count because it requires 2proposals to succeed. Nice catch!0xLienidFix: https://github.com/OlympusDAO/bophades/pull/298IllIllI000The PR properly adds the operations in the recommendation to the list of what'sconsidered high risk, as well as the recommendations from all of the duplicates.This is done by returning true for anything with a target of the timelock ordelegator, or for any kernel migration or executor change. The PR also adds tests.

22

s1ceEscalateThis is an informational issue. There are comments in the code which specificallydescribe the modules that the sponsors consider to be high risk , so wouldconsider this to be a design decision.For example, the following comments:
// If the action is upgrading a module (1)

// If the action is installing (2) or deactivating (3) a policy, pull the
list of dependenciessherlock-admin2EscalateThis is an informational issue. There are comments in the code whichspecifically describe the modules that the sponsors consider to be highrisk , so would consider this to be a design decision.For example, the following comments:

// If the action is upgrading a module (1)

// If the action is installing (2) or deactivating (3) a policy,
pull the list of dependenciesYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuang@IllIllI000 any comments? I think this is not informational, because sensitive actionslike this should consistently have appropriate quorums in place and not break thehigh risk invariant allowing for execution with lower votes than normal. This cannotbe seen as a documentation and design decision error given an explicit fix has beenmade.However, considering the veto mechanism, I can see where @s1ce is coming from.IllIllI000I think the Sherlock team will need to decide what they want to do for this sort ofcase, since bricking the protocol is an unambiguously dangerous ability, and thepurpose of the feature is to prevent that sort of thing (or else why not just rely onvetos for everything). The readme also says The proposal can be vetoed at any

23

time (before execution) by the veto guardian. Initially, this role will
belong to the DAO multisig. However, once the system matures, it could be
set to the zero address., so at some point in the future, there will be nobody toveto anything.0xLienidPersonally think this is a medium. These are definitionally high risk changes.nevillehuangI think the Sherlock team will need to decide what they want to do forthis sort of case, since bricking the protocol is an unambiguouslydangerous ability, and the purpose of the feature is to prevent that sortof thing (or else why not just rely on vetos for everything). The readmealso says The proposal can be vetoed at any time (before execution)

by the veto guardian. Initially, this role will belong to the DAO
multisig. However, once the system matures, it could be set to the
zero address., so at some point in the future, there will be nobody toveto anything.Extremely good point, I think this should remain as medium severity.Czar102Agree with @nevillehuang, @0xLienid and @IllIllI000. It seems managing policies isstrictly safer than migrating the whole kernel.Planning to reject the escalation and leave the issue as is.Czar102Result: Medium Has duplicatessherlock-adminEscalations have been resolved successfully!Escalation status:• s1ce: rejected

24

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

25

