SHERLOCK SECURITY REVIEW FOR

Prepared for: Olympus

Prepared by: Sherlock

Lead Security Expert: 1l

Dates Audited: January 22 - January 25, 2024
Prepared on: February 6, 2024

The Olympus protocol is a decentralized financial (DeFi) system that supports
OHM, a treasury backed token on the Ethereum network.

Repository: OlympusDAO/bophades
Branch: governance-clean
Commit: 3c4098ef9b2870f4ebd912b15466780676ba7db8

For the detailed scope, see the contest details.

Each issue has an assigned severity:

» Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
4 0
Medium
0 0
Min LTDingZhen haxatron
hals ck rock3tz
cawfree fibonacci Kow

. @/ SHERLOCK

blutorque nobody2018 alexzoid

emrekocak Bauer slce
pontifex cocacola Breeje

5 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governanc
e-judging/issues/37

Found by

Bauer, Breeje, alexzoid, blutorque, cawfree, cocacola, emrekocak, fibonacci, hals,
nobody2018, pontifex, slce

Summary

[castVote](https://github.com/sherlock-audit/2024-01-olympus-on-chain-governa
nce/blob/main/bophades/src/external/governance/GovernorBravoDelegate.sol#L3
69)/[castVoteWithReason](https://github.com/sherlock-audit/2024-01-olympus-on

-chain-governance/blob/main/bophades/src/external/governance/GovernorBravoD

elegate.sol#L385)/[castVoteBySig](https://github.com/sherlock-audit/2024-01-oly
mpus-on-chain-governance/blob/main/bophades/src/external/governance/Govern
orBravoDelegate.sol#L403) are used to vote for the specified proposal. These
functions internally call [castVotelnternal](https://github.com/sherlock-audit/2024-
01-olympus-on-chain-governance/blob/main/bophades/src/external/governance/
GovernorBravoDelegate.sol#L433-L437) to perform voting logic. However,
castVoteInternal can never be executed successfully.

Vulnerability Detail

File: bophades\src\external\governance\GovernorBravoDelegate.sol

433: function castVotelInternal(

434 : address voter,

435: uint256 proposalld,

436: uint8 support

437:) internal returns (uint256) {

444 : // Get the user's votes at the start of the proposal and at the
— time of voting. Take the minimum.

445: uint256 originalVotes = gohm.getPriorVotes(voter,

— proposal.startBlock);

446:-> uint256 currentVotes = gohm.getPriorVotes(voter, block.number) ;
447 : uint256 votes = currentVotes > originalVotes 7 originalVotes :
— currentVotes;

462: T

The second parameter of gohm.getPriorVotes(voter, block.number) can only a

3 @/ SHERLOCK

number smaller than block.number. Please see the [code](https://etherscan.io/toke
n/0x0ab87046fBb341D058F17CBC4c1133F25a20a52f#code#L703) deployed by
gOHM on the mainnet:

function getPriorVotes(address account, uint256 blockNumber) external view
— returns (uint256) {

-> require(blockNumber < block.number, "gOHM::getPriorVotes: not yet
< determined");

Therefore, L446 will always revert. Voting will not be possible.

Copy the coded POC below to one project from Foundry and run forge test
-vvv to prove this issue.

// SPDX-License-Identifier: UNLICENSED
pragma solidity ~0.8.20;

import "forge-std/Test.sol";

interface CheatCodes {
function prank(address) external;
function createSelectFork(string calldata,uint256) external returns(uint256);

interface IGOHM {
function getPriorVotes(address account, uint256 blockNumber) external view
— returns (uint256);

}

contract ContractTest is DSTest{
address gOHM = 0x0ab87046fBb341D058F17CBC4c1133F25a20a52f ;
CheatCodes cheats = CheatCodes(0x7109709ECfa91a80626fF3989D68f67F5b1DD12D) ;

function setUp() public {
cheats.createSelectFork("https://rpc.ankr.com/eth", 19068280) ;
}

function testRevert() public {
address user = address(0x12399543949349) ;
cheats.prank(user) ;
IGOHM (gOHM) . getPriorVotes (address(0x1111111111), block.number) ;

function testOk() public {
address user = address(0x12399543949349) ;

a @/ SHERLOCK

cheats.prank(user) ;
IGOHM (gOHM) . getPriorVotes (address(0x1111111111), block.number - 1);

b
/**output
[PASS] testOk() (gas: 13019)
[FAIL. Reason: revert: gOHM::getPriorVotes: not yet determined] testRevert()
— (gas: 10536)
Traces:
[10536] ContractTest::testRevert()
[0] VM::prank(0x0000000000000000000000000012399543949349)
9)
[640] 0x0ab87046fBb341D058F17CBC4c1133F25a20a52f : : getPriorVotes(0x000000000 |
— 0000000000000000000001111111111, 19068280 [1.906e7]) [staticcalll]
revert: gOHM::getPriorVotes: not yet determined
revert: gOHM::getPriorVotes: not yet determined

Test result: FAILED. 1 passed; 1 failed; O skipped; finished in 1.80s
*%/

Impact

Nobody can cast for any proposal. Not being able to vote means the entire
governance contract will be useless. Core functionality is broken.

Code Snippet

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m
ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L 446

Tool used

\YERTEIRREVIE

Recommendation

Discussion
sherlock-admin2

1 comment(s) were left on this issue during the judging contest.
haxatron commented:

c @/ SHERLOCK

Medium. It would be caught immediately on deployment and
implementation is upgradeable. There can be no loss of funds which is
requisite of a high.

iooo
Agree with haxatron that this is Medium, not High, based on Sherlock's rules
nevillehuang

Can agree, since this is purely a DoS, no malicious actions can be performed since
no voting can be done anyways.

@Czar102 | am interested in hearing your opinion, but | will set medium for now,
because governance protocols fund loss impact is not obvious but | initially rated it
high because it quite literally breaks the whole protocol. | believe sherlock needs to
cater to different types of protocols and not only associate rules to defi/financial
losses (example protocols include: governance, on chain social media protocols
etc..)

OxLienid
Fix: https://github.com/OlympusDAO/bophades/pull/293
iooo

The PR follows the suggested recommendation and correctly modifies the only
place that solely block.number is used, changing it to block.number - 1. The only
place not using this value is the call above it which uses proposal.startBlock. The
state() when startBlock is equal to block.number iS ProposalState.Pending, SO this
case will never cause problems, since there are checks of the state. The PR also
modifies the mock gOHM contract to mirror the behavior that caused the bug.

slce
Escalate

This is a high. Voting is a core part of a governance protocol, and this bricks all
voting functionality.

sherlock-admin2
Escalate

This is a high. Voting is a core part of a governance protocol, and this
bricks all voting functionality.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

5 @/ SHERLOCK

Oxf1bO

Besides the fact that this issue breaks the core logic of the contract, it won't be
immediately detected upon deployment, as previously mentioned as the reason for
downgrading the severity. The voting process only becomes possible after a
proposal has been made and time has elapsed. At this point, the issue will be
raised, necessitating the deployment of an update. While the new version is being
prepared, the proposal may expire, and a new one will have to be created. If the
proposal includes some critical changes, this time delay can pose a serious
problem.

lmooo

Furthermore, the timelock needs to pull in order to become and admin with access
to the treasury. Until that happens, the existing admin has the power to do
anything, so there's no case where something critical can't be done. The 'pull’
requirement for transferring the admin to the timelock is a requirement of the code,
not of the test. The Sherlock rules also state that opportunity costs (e.g. delays in
voting for example, due to a loss of core functionality) do not count as a loss
of funds.

rOck3tzx

The test file within setUp () function configures the environment for testing, not for
the actual deployment. The deployment process can and probably will look
different, so no assumptions should be made based on the test file. The mention
just shows how the whitelistGuardian Will be configured, and not at what
time/stage it will be done.

The LSW creates hypotheticals about how the deployment process might look, and
because of that, the issue would be caught early. Anyone who has ever deployed a
protocol knows that the process is complex and often involves use of private
mempools. Making assumptions about the deployment without having actual
deployment scripts is dangerous and might lead to serious issues.

Oxf1bO

Even though some proposals may be initiated at the time of deployment, it will take
between 3 to 7 days before the issue becomes apparent, as voting will not be
available until then.

nevillehuang

| agree with watsons here, but would have to respect the decision of @Czar102 and

. @/ SHERLOCK

his enforcement of sherlock rules. Governance protocols already have nuances of
funds loss being not obvious, and the whole protocol revolves around voting as the
core mechanism, if you cannot vote, you essentially lose the purpose of the whole
governance.

Oxf1bO

I've seen a lot of discussion regarding the rule of funds at risk. It seems that they
never take into account the lost profits. A scenario where the core functionality of
the system is broken could result in a loss of confidence in the protocol, causing
users to be hesitant about investing their money due to the fear of such an issue
recurring.

Czar102

From my understanding, due to the fact that the timelock needs to pull, the new
governance contract needs to call it. And since it's completely broken, it will never
pull the admin rights.

Hence, this is not a high severity impact of locking funds and rights in a
governance, but a medium severity issue since the contract fails to work. Is it
accurate? @lIIIO00

imooo

Yes, that's correct

Czar102

Planning to reject the escalation and leave the issue as is.
0xf1b0

By the way, it will not be possible to update the contract, because a new
implementation can only be set through the voting process, which does not work.

That's at least 2 out of 3:
e it won't be immediately detected upon deployment
« it's not upgradeable

limooo

it's being deployed fresh for this project, so it'll just be redeployed. The 2/3 stuff |
think you're referring to is for new contests

Czar102
Result: Medium Has duplicates
sherlock-admin

Escalations have been resolved successfully!

8 @/ SHERLOCK

Escalation status:

e slce: rejected

S @/ SHERLOCK

Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governanc
e-judging/issues/100

Found by

NI, Kow, cawfree, fibonacci, haxatron, rOck3tz

Summary

Adding extra unused bytes to proposal calldata can trick the
_isHighRiskProposal() function

Vulnerability Detail

The length checks on the transaction calldata of what falls into the 'high risk'’
proposal category is too strict, and incorrectly fails with extra padding. In solidity,
any extra bytes of calldata, beyond what is required to satisfy the function
arguments, are ignored, and have no effect on the operation of the function being
called.

Impact

A proposal that should have been flagged as high risk, is not, and therefore can be
passed with the easier, lower, quorum. This violates a critical invariant.

Code Snippet

Checks for calls to the kernel's executeAction() function, expect exactly the right
number of bytes to satisfy the function arguments, and no more:

// File: src/external/governance/GovernorBravoDelegate.sol :
— GovernorBravoDelegate._isHighRiskProposal () #1

631 // Check if the action is making a core change to system
— via the kernel

632 if (selector == Kernel.executeAction.selector) {

633 uint8 action;

634 address actionTarget;

635

636 ©> if (bytes(signature).length == 0 && data.length ==
o 0x44) {

10 @/ SHERLOCK

637 assembly {

638 action := mload(add(data, 0x24)) //

— accounting for length and selector in first 4 bytes

639 actionTarget := mload(add(data, 0x44))

2 by

641 ©> } else if (data.length == 0x40) {

642 (action, actionTarget) = abi.decode(data, (uint8,
s address));

643 } else {

644 continue;

645: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m

ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L631-L645

this results in an easier quorum threshold:

// File: src/external/governance/GovernorBravoDelegate.sol :
— GovernorBravoDelegate.propose() #2

168 // Identify the quorum level to use

169 ©@> if (_isHighRiskProposal(targets, signatures, calldatas)) {
170 quorumVotes = getHighRiskQuorumVotes() ;

171 } else {

172 @> quorumVotes = getQuorumVotes() ;

173: +

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m

ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L168-L173

Tool used

\YERTEIREVIE

Recommendation

Change length checks to be >=, rather than strict equality, since the function
signature already specifies the number of arguments

PoC

The following test shows that extending the calldata by an empty byte still triggers
a valid call to executeAction(), but is categorized as lower severity:

T @/ SHERLOCK

diff --git a/bophades/src/test/external/GovernorBravoDelegate.t.sol
— b/bophades/src/test/external/GovernorBravoDelegate.t.sol
index 778163c..bdb6ae2 100644
--- a/bophades/src/test/external/GovernorBravoDelegate.t.sol
+++ b/bophades/src/test/external/GovernorBravoDelegate.t.sol
@@ -386,6 +386,10 @@ contract GovernorBravoDelegateTest is Test {
assertEq(quorum, 200_000e18) ;
}

function executeAction(Actions action_, address target_) external {
console2.log("executed with extra calldata");

}

+ + + +

function testCorrectness_proposeCapturesCorrectQuorum_highRisk() public {
// Activate TRSRY
vm.prank (address (timelock)) ;
@@ -404,9 +408,12 @@ contract GovernorBravoDelegateTest is Test {
calldatas[0] = abi.encodeWithSelector(
kernel .executeAction.selector,
Actions.ActivatePolicy,
- address(custodian)

+ address(custodian),
+ nn
);
+ address(this) .call(calldatas[0]);
+

vm.prank(alice);
bytes memory data = address(governorBravoDelegator) .functionCall(
abi.encodeWithSignature (

Output:

% forge test --match-test testCorrectness_proposeCapturesCorrectQuorum_highRisk
— -VV

[FAIL. Reason: assertion failed]
— testCorrectness_proposeCapturesCorrectQuorum_highRisk() (gas: 568208)

Logs:
executed with extra calldata
Error: a == b not satisfied [uint]

Expected: 300000000000000000000000
Actual: 200000000000000000000000

Test result: FAILED. O passed; 1 failed; O skipped; finished in 14.92ms

7 @/ SHERLOCK

Discussion
OxLienid

Valid, will fix by reverting if the calldata doesn't match the right size since we know
what the size must be for an executeAction call

OxLienid
Fix: https://github.com/OlympusDAQO/bophades/pull/299
mooo

The PR introduces a new revert error, and reverts if the length is longer than
expected, rather than allowing the code to continue if the calldata is longer than
expected. Since the selector ensures that the right number of arguments is passed,
there is no error in restricting possible future uses of extra calldata. The PR also
adds a test.

13 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governanc
e-judging/issues/102

Found by
I, hals

Summary

The pessimistic vote casting approach stores its cutoffs based on the total supply
during proposal creation, rather than looking up the current value for each check.

Vulnerability Detail

gOHM token holders can delegate their voting rights either to themselves or
to an address of their choice. Due to the elasticity in the gOHM supply, and
unlike the original implementation of Governor Bravo, the Olympus governance
system relies on dynamic thresholds based on the total gOHM supply. This
mechanism sets specific thresholds for each proposal, based on the current
supply at that time, ensuring that the requirements (in absolute gOHM terms)
for proposing and executing proposals scale with the token supply. https://qgit
hub.com/sherlock-audit/2024-01-olympus-on-chain-governance/tree/main/bopha
des/audit/2024-01_governance#olympus-governor-bravo-implementation

The above means that over time, due to dynamic minting and burning, the total
supply will be different at different times, whereas the thresholds/quorums
checked against are solely the ones set during proposal creation.

Impact

DoS of the voting system, preventing proposals from ever passing, under certain
circumstances

Consider the case of a bug where there is some sort of runaway death spiral bug or
attack in the dymamic burning of gOHM (e.qg. opposite of Terra/Luna), and the only
fix is to pass a proposal to disable the module(s) causing a problem where
everyone is periodically having their tokens burn()-from-ed. At proposal creation
there are sufficient votes to pass the threshold, but after the minimum 3-day
waiting period, the total supply has been halved, and the original proposer no
longer has a sufficient quorum to execute the proposal (or some malicious user
decides to cancel it, and there is no user for which isWhitelisted() returns true).

0 @/ SHERLOCK

No proposal can fix the issue, since no proposal will have enough votes to pass, by
the time it's time to vote. Finally, once the total supply reaches low wei amounts,
the treasury can be stolen by any remaining holders, due to loss of precision:

e getProposalThresholdVotes(): min threshold is 1_000, so if supply is <100,
don't need any votes to pass anything

e getQuorumVotes(): quorum percent is hard-coded to 20_000 (20%), so if
supply drops below 5, quorum is zero

e getHighRiskQuorumVotes(): high percent is hard-coded to 30_000 (30%), so if
supply drops below 4, quorum is zero for high risk

Code Snippet

The quorum comes from the total supply...

// File: src/external/governance/GovernorBravoDelegate.sol :
< GovernorBravoDelegate.getHighRiskQuorumVotes() #1

698 function getQuorumVotes() public view returns (uint256) {

699 return (gohm.totalSupply() * quorumPct) / 100_000;

700 }

706 function getHighRiskQuorumVotes() public view returns (uint256) {
707 return (gohm.totalSupply() * highRiskQuorum) / 100_000;

708: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m

ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L696-L708

...and is set during propose(), and checked as-is against the eventual vote:

// File: src/external/governance/GovernorBravoDelegate.sol :
— GovernorBravoDelegate.getVoteOutcome() #2

804 } else if (

805 (proposal.forVotes * 100_000) / (proposal.forVotes +
— proposal.againstVotes) <

806 @> approvalThresholdPct ||

807 ©> proposal.forVotes < proposal.quorumVotes

808) {

809 return false;

810: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m

ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L804-L810

15 @/ SHERLOCK

Tool used

Manual Review

Recommendation

Always calculate the quorum and thresholds based on the current
gohm.totalSupply() as is done in the OZ implementation, and consider making
votes based on the fraction of total supply held, rather than a raw amount, since
vote tallies are affected too

Discussion
OxLienid

If votes are locked in at a maximum of the value a voter had at the time the
proposal started | don't think it makes sense to use the current totalSupply at
proposal queueing to determine success/meeting quorum. you want it to be a
comparable value to the votes values, hence lock it in at proposal creation

mooo

Since the votes are locked in at the proposal start, then shouldn't the quorum be
based on the total supply at that starting block, in order to have a comparable
value? Right now the code is consistent with the proposal time only, which may
have a vastly different total supply. Shouldn't the code always be consistent with
total supply of whichever block is being checked? The votes would still be at the
time of the start of voting, but when determining whether a proposal should be
queueable/executable/cancelable, if everyone's token counts and the total supply
has be halved, there has been no change in who logically would be best positioned
to vote, but since the code compares against a stored raw value rather than a ratio,
the proposal can fail through no fault of the proposer. They would be able to
propose a new vote but be unable to use their old proposal, even though the
ownership percentage is the same as before.

nevillehuang

@OxLienid | think @IIINIOOO highlights a valid scenario where this can cause a
significant issue, and makes a good point as to why OZ implements quorums and
thresholds computation that way.

However, | can also see how this is speculating on emergency situations etc.., but |
think in the context of a governance, it is reasonable given it is where sensitive
actions are performed. @Czar102 What do you think of this?

OxLienid

16 @/ SHERLOCK

| just don't agree that you want the quorum to be subject to deviations in supply
during the voting period. It allows user manipulation of the ease/difficulty required
to pass a proposal.

shouldn't the quorum be based on the total supply at that starting block,
in order to have a comparable value?

yes, but that's impossible with gOHM

Frankly, | feel like if there is a critical bug in the core voting token then it's pretty
expected that the governance system is also broken.

The only tenable option | guess is getting rid of the pessimistic voting.
OxLienid

@nevillehuang @IININO00 Do you guys have additional thoughts on this? I'm trying
to think about how severe it actually is, and if there's any path to fixing it other than
using the live total supply which feels more or less similar to using votes not pinned
to a block which is bad.

ooo

@OxLienid When you say it's impossible with gOHM, | believe you mean that once
the starting block has passed, that there's no way to get the total supply from that
prior block. If that's what you meant, in order to get the total supply at the starting
block, you could require that the proposal creator actually trigger the start of voting
(within some grace period) with another transaction at some point after the
projected start block based on the delay, and have that operation update the
stored quorums and start block at that point, assuming that the old quorums are
still valid. In reality, the proposer controls the block during which the start occurs
anyway, since the proposal block is under their control, and the delay is known.

As for the remainder of the issue, I'm not familiar with all that is planned, but | don't
think it would have to be a bug in the core voting token itself - it could be a kernel
module that has a role that allows it to mint/burn gOHM, given some algorithm with
a time delay. Once things are decentralized, it's difficult to be able to predict that
that won't happen. You could create a new gOHM that checkpoints the prior total
supply, and migrate the old token, but yeah, that would be a big change, and would
likely require larger changes than can be done for this contest.

nevillehuang

Actually @IIlINOOO will there even ever be a situation where gOHM would be burned
to literal 100, 5 and 4 given gOHM holds 18 decimals? | think on second look this is
low severity, given the protocol can easily just implement a sanity check where
they block any proposals creation/execution/queue and allow cancellation once
totalSupply reaches this extreme small values.

- @/ SHERLOCK

I'm guessing your issue also points to the possible decrease in absolute quorums
not just solely small amounts, but | think that example is not realistic and
representative enough. Or am | missing a possible scenario where gOHM supply
can reach literal small weis of value?

@OxLienid maybe a possible fix would be to make quorum percentages adjustable?
This could open to front-running attacks though so I'll have to think through it more.

ooo

@nevillehuang the 100/5/4 scenario is the end point after which everything can get
stolen. Prior to that, this bug outlines that they can't stop an ongoing attack
because creating a proposal to do so would never pass quorums due to the bug.
This bug essentially was an elaboration of the issue described in the duplicate #74,
to show that it's an issue with the underlying mechanics, rather than a one-time
total supply discrepancy

nevillehuang

@IINNO00 Yup that is my initial thoughts as well, sorry that | got confused by that
scenario. | will likely maintain this issue as medium severity, and facilitate
discussions between us and sponsor for a potential fix, since it seems to be non
trivial.

OxLienid

Ok @IIINNO00 @nevillehuang just talked with the other devs for a bit and here's
what we came up with.

1. Separate out proposal activation to another function so we can snapshot total
supply more accurately

2. Set a minimum total supply such that proposing/queuing/executing ends up in
the hands of an admin (and block the standard behavior for end users) if we
fall below that. If you think about a burn bug of this magnitude it's a critical
implosion of the protocol and so it makes sense to not rely on full on chain
governance

Thoughts?
iooo

By activation, you mean the triggering of the start of voting like | described above,
or do you mean something else? The docs mention a veto guardian that will
eventually be set to the zero address. If there is a new admin for this case, it won't
be able to do the same sort of relinquishment without having the end result of the
attack being a locked treasury (assuming there's no governance bypass to access
funds some other way). If that's acceptable, | believe your two changes will solve
the issue.

18 @/ SHERLOCK

OxLienid

Yep, triggering of the start of voting.

Oxrusowsky
 https://github.com/OlympusDAO/bophades/pull/303

@IIINNOO0O0 ready for review

RealLTDingZhen

| thought about this issue while the contest was going on and didn't submit it,
because | thought it's a design choice——Due to the highly variable totalsupply of
gOHM, the proposer may need far more tokens than its initial amount to ensure that
the proposal is not canceled, and opponents can use fewer votes to reject the
proposal by mint more gOHM. By the way, the solution given by LSR is
flawed——Attackers can manipulate totalsupply to cancel the proposer's proposal
through flashloan.

lmooo

The PR implements part of the discussed changes. There is a new gOHM total
supply threshold, under which only emergency votes are allowed. The level is
correctly many orders of magnitude above the levels at which quorums have loss of
precision. Calls to propose () are prevented when the total supply falls below the
cutoff. A new emergencyPropose() is added, which can only be called during
emergencies, by the veto guardian. It does not have any threshold requirements, or
any limit to the number of outstanding proposals (both good), and does not update
latestProposallds (OKk). Besides those differences, the code looks like propose().
For propose () the end block and quorum are no longer initially set, and require the
user to call activate() to set them instead. The activate() function requires a
non-emergency, pending state, for the start block to have been passed, and to not
have been activated before. The proposal can be reentrantly re-activated in the
same way #62, but there aren't any negative effects outside of extra events. There
is no cut-off of when a proposal can be activated, which may allow proposals to
stay dormant for years, until they're finally activated. activate() cannot be called
during emergencies, so proposals created before an emergency will expire if things
don't get resolved. This also means emergencyPropose () does not require activation
or any actual votes - just that delays have been respected (seems to be intended
behavior). The execute () function does not require any specific state during
emergencies for the veto admin, but timelock.executeTransaction() prevents
calling it multiple times. The state () function has a new state for Emergency, which
applies to any proposal created by the veto admin via emergencyPropose (). Bug
Med: the proposal.proposalThreshold isn't updated during activate(), which can be
many years after the initial proposal. Bug Low: extra events if reentrantly called Bug
Low: emergency proposals (more than one is allowed) created during one
emergency, can be executed during a later emergency

19 @/ SHERLOCK

OxLienid
Refix: https://github.com/OlympusDAO/bophades/pull/334

We added a activation grace period (which is checked in the state call) so that
proposals cannot sit unactivated for months or years. We believe this sufficiently
reduces the proposalThreshold concern. We chose not to update the
proposalThreshold at the time of activation with this added check because it feels
backwards from a governance perspective to brick someone's proposal after
proposing if their balance has not changed.

We also shifted certain components of the proposal struct modification above the
_isHighRiskProposalCheck to prevent reentrancy.

iooo

The PR correctly addresses the Medium and one of the Lows from item 7 of 9 of
the prior review, while leaving the remaining Low about emergency proposals being
able to be used across emergencies. The extra events issue is fixed by moving up
the state variable assignments to above the high risk proposal checks. The Medium
is addressed by introducing a new state variable to
GovernorBravoDelegateStorageV1, rather than to
GovernorBravoDelegateStorageV2, for a grace period. There is no setter for the
variable, so it must be set during the call to initialize() as the penultimate
argument, which is properly done, or by creating a new implementation with a
setter function. The initialize() call bounds the value within reasonable limits.
The min amount is set to 17280, which is 2.4 days, and the max is set to 50400,
which is exactly 7 days. The state() function is properly changed to convert
Pending to Expired, after the activation grace period. The code reverts with
GovernorBravo_Vote_Closed() when activation is attempted after the grace period.
The PR adds tests for the grace period and for the reentrancy issue With the death
spiral issue and the activation grace period issue resolved, the issue of the total
supply changing has been mitigated to low.

20 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2024-01-olympus-on-chain-governanc
e-judging/issues/104

Found by
[N, LTDingZhen, cawfree, ck

Summary

Things such as changing the list of high risk operations, or migrating kernels are not
counted as high risk, even though they are high-risk

Vulnerability Detail

High risk modules are checked against a mapping, but the changing of values
within the mapping is not marked as high risk.

In addition, the MigrateKernel action is not protected, even though it can
brick the protocol

Impact

Allows an attacker to brick the protocol with a low threshold, or to remove the
high-risk modules from the list of high risk modules, resulting in a lower threshold
Violates invariant of high-risk actions needing to be behind a higher quorum

Code Snippet

MigrateKernel isn't considered high-risk, and neither are calls to
_setModuleRiskLevel():

// File: src/external/governance/GovernorBravoDelegate.sol :
< GovernorBravoDelegate._isHighRiskProposal() #1

647 ©> // If the action is upgrading a module (1)

648 if (action == 1) {

649 // Check if the module has a high risk keycode
650 if

— (isKeycodeHighRisk[Module(actionTarget) .KEYCODE()]) return true;

651 +

652 ©@> // If the action is installing (2) or deactivating
— (3) a policy, pull the list of dependencies

o @/ SHERLOCK

653 else if (action == 2 || action == 3) {

654 // Call ~configureDependencies” on the policy
655 Keycode[] memory dependencies =

< Policy(actionTarget)

656 .configureDependencies() ;

657

658 // Iterate over dependencies and looks for high
— risk keycodes

659 uint256 numDeps = dependencies.length;

660 for (uint256 j; j < numDeps; j++) {

661 Keycode dep = dependencies[j];

662 if (isKeycodeHighRisk[dep]) return true;
663 }

664: }

https://github.com/sherlock-audit/2024-01-olympus-on-chain-governance/blob/m

ain/bophades/src/external/governance/GovernorBravoDelegate.sol#L647-L664

Tool used

\YERTEIRRGEVIEN

Recommendation
Add those operations to the high risk category

Discussion

sherlock-admin2
1 comment(s) were left on this issue during the judging contest.
haxatron commented:

Medium. Bypass of a non-critical security feature for MigrateKernel(). |
would say setModuleRiskLevel() part doesn't count because it requires 2
proposals to succeed. Nice catch!

OxLienid
Fix: https://github.com/OlympusDAQO/bophades/pull/298
mooo

The PR properly adds the operations in the recommendation to the list of what's
considered high risk, as well as the recommendations from all of the duplicates.
This is done by returning true for anything with a target of the timelock or
delegator, or for any kernel migration or executor change. The PR also adds tests.

o5 @/ SHERLOCK

slce
Escalate

This is an informational issue. There are comments in the code which specifically
describe the modules that the sponsors consider to be high risk , so would
consider this to be a design decision.

For example, the following comments:
// If the action is upgrading a module (1)

// If the action is installing (2) or deactivating (3) a policy, pull the
list of dependencies

sherlock-admin2
Escalate

This is an informational issue. There are comments in the code which
specifically describe the modules that the sponsors consider to be high
risk , so would consider this to be a design decision.

For example, the following comments:
// If the action is upgrading a module (1)

// If the action is installing (2) or deactivating (3) a policy,
pull the list of dependencies

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

@IIINO00 any comments? | think this is not informational, because sensitive actions
like this should consistently have appropriate quorums in place and not break the
high risk invariant allowing for execution with lower votes than normal. This cannot
be seen as a documentation and design decision error given an explicit fix has been
made.

However, considering the veto mechanism, | can see where @sce is coming from.
limooo

| think the Sherlock team will need to decide what they want to do for this sort of
case, since bricking the protocol is an unambiguously dangerous ability, and the

purpose of the feature is to prevent that sort of thing (or else why not just rely on
vetos for everything). The readme also says The proposal can be vetoed at any

23 @/ SHERLOCK

time (before execution) by the veto guardian. Initially, this role will
belong to the DAO multisig. However, once the system matures, it could be
set to the zero address., SO at some point in the future, there will be nobody to
veto anything.

OxLienid
Personally think this is a medium. These are definitionally high risk changes.
nevillehuang

| think the Sherlock team will need to decide what they want to do for
this sort of case, since bricking the protocol is an unambiguously
dangerous ability, and the purpose of the feature is to prevent that sort
of thing (or else why not just rely on vetos for everything). The readme
also says The proposal can be vetoed at any time (before execution)
by the veto guardian. Initially, this role will belong to the DAO
multisig. However, once the system matures, it could be set to the
zero address., SO at some point in the future, there will be nobody to
veto anything.

Extremely good point, | think this should remain as medium severity.
Czar102

Agree with @nevillehuang, @OxLienid and @IIIIIO0O0. It seems managing policies is
strictly safer than migrating the whole kernel.

Planning to reject the escalation and leave the issue as is.
Czar102

Result: Medium Has duplicates

sherlock-admin

Escalations have been resolved successfully!

Escalation status:

» slce: rejected

i @/ SHERLOCK

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

95 @/ SHERLOCK

